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SLURM SIMULATOR: INTRODUCTION

• I work as a performance engineer at Barcelona  
SuperComputing Center (BSC), Spain
 
• We have 5 HPC cluster with Slurm, the big (and old) 
one with 2500 nodes

• Expecting a Petaflop machine before year's end 

• BSC leader of RES (Supercomputers Network of 
Spain) with 7 HPC clusters (technology centers )
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SLURM SIMULATOR: INTRODUCTION
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SLURM SIMULATOR: WHY SLURM SIMULATOR?

• We use Moab with Slurm for batch scheduling in most of 
the clusters

• Scheduling configuration/tuning depends on parameters 
like: fair sharing tree, qos/user/group limits, backfilling 
interval/chunk, reservations
 
• Moab supports some sort of simulation mode (Moab 
manual says that). Using real job submission traces under 
simulation can tell us which configuration would be better
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SLURM SIMULATOR: WHY SLURM SIMULATOR?

•  I could not make this simulation mode working under 
Moab (Adaptive Computing  “this is not supported any 
more...”) 

• Uhmmm … Why not to have such a mode with Slurm?

• Last Slurm meeting in Paris we presented a first proposal 
and no one said we were mad so ...
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SLURM SIMULATOR: DESIGN

Some things about Slurm:

• Slurm is a multithread and distributed software

• Two main components: slurmctl and slurmd

• Code optimized for starting/signaling jobs through 
hundred or thousands of node

• Agent threads for communications
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SLURM SIMULATOR: DESIGN

➔ Goal: Minimum changes to slurm core 

➔ A new program, sim_mgr will take the control of Slurm      
   execution and maintain simulation time domain

➔ LD_PRELOAD will be used catching slurmctl/slurmd  
time-related functions (time, sleep, gettimeofday) inside a 
library sim_lib

➔ Shared memory will be used for global simulation time

➔ Just one slurmd will be needed but no jobs executed   



11

SLURM SIMULATOR: DESIGN

• Capturing time-related calls with LD_PRELOAD is easy 
and simple with a single thread program but...

• With Multithread & Distributed Slurm:

➔ Thread-related calls need to be captured as well inside 
sim_lib
 

➔ A per-thread structure in the shared memory keeping thread 
ID (simulation domain), sleep seconds field, semaphores

➔ Semaphores used for simulation control: just one thread 
executed concurrently*
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SLURM SIMULATOR: DESIGN

• Slurm threads from simulator point of view:

➔ Those being executed through the full simulation / execution 
with a periodic cycle using sleep call (created when slurm is 
initialized during first simulation cycles)

➔ Those created and finished during a simulation cycle: no 
sleep calls made (created with new events: job submission, job 
dispatched, job finished)

➔ Some special ones like rpc threads which need to execute at 
any time without sim_mgr control for avoiding deadlocks.Those 
live thorugh the whole simulation but no sleep call made.
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SLURM SIMULATOR: DESIGN

• A thread from slurmctld or slurmd will go through:

(1) pthread_create is captured and a thread is registered inside 
sim_mgr thread array getting an unique ID

(2)  Threads code executes

(3) If this is a periodic thread, sleep call is captured by sim_lib 
and thread waits on a semaphore

(4) Threads call pthread_exit which releases slot in sim_mgr 
array
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SLURM SIMULATOR: DESIGN

sim_mgr

➔ A simulation cycle represent a real second
➔ Each cycle:

(1) Goes through all threads registered and leaves them to execute if no 
sleeping, just one at a time (determinism)

(2)  Looks for new events from trace file: new job, new reservation

(3) Checks for new threads created during this cycle (this is done in 
several places) and waits till all exit.

(4) Increments simulation time
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SLURM SIMULATOR: IMPLEMENTATION

• Slurm simulator should be transparent for slurm 
core developers

• Two pieces of software external to slurm core: 
sim_mgr and sim_lib

• Semaphores and shared memory created and 
initialized by sim_mgr 
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SLURM SIMULATOR: IMPLEMENTATION
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SLURM SIMULATOR: IMPLEMENTATION

Slurm code changes

• Threads need to call pthread_exit explicitly

• Jobs and nodes Monitoring is not actived at slurmctld

• Agents are avoided: job start message is part of thread doing the 
schedule (deadlock, determinism)

• Slurmd accepts messages from sim_mgr for getting information 
about job duration. A new thread controls when a job finishes for 
sending message to slurmctld
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SLURM SIMULATOR: IMPLEMENTATION

Job submission/dispatch
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SLURM SIMULATOR: IMPLEMENTATION

Job completion

• Sim_helper thread (slurmd) checks for jobs finishing  in each 
simulation cycle

• Usual COMPLETE_BATCH_SCRIPT and EPILOG_COMPLETE 
sent to slurmctld

• EPILOG_COMPLETE message does NOT give rise to schedule in 
slurmctld. A single call to schedule instead when all epilog 
messages are sent using a special message from slurmd to 
slurmctld (determinsm)
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SLURM SIMULATOR: IMPLEMENTATION

Job completion
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SLURM SIMULATOR: IMPLEMENTATION

Slurm code changes

• Backfilling thread execution time by scheduling cycle is dependent 
on numer of jobs waiting. It can take long even tuning bf depth

• Backfilling algorithm checks if execution time exceeds a configured 
limit (sched_timeout = 5 seconds by default). If so it goes to sleep for 
backfilling_interval seconds.

• It keeps going from same point inside backfilling algorithm except if 
some update to any job, node or partition.

• Under simulation it is not possible to check “real” execution time 
easily. A loop counter for processed jobs 
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SLURM SIMULATOR: IMPLEMENTATION

Simulator Monitor

• Stopping simulation on a specific point in time

• It can be periodic for getting data

• When simulation stopped some slurm commands can still 
be executed like:

scontrol setdebug 9
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SLURM SIMULATOR: RESULTS

• Simulator initial work on slurm-2.1.9

• First porting to slurm-2.2.6 really fast and easy

• Lines changed:  

➔ 563 added
➔ 17 removed
➔ Plus ~2000 lines sim_mgr.c  and sim_lib.c
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SLURM SIMULATOR: RESULTS

Performance

• Intel Xeon 2.5Ghz, 8 cores, 12GBytes of memory
• Using a real two month trace from Marenostrum 
(~50000 jobs, 489 users, 19 qos, 15 accounts)

• Marenostrum: 2500 nodes, 4 cores by node

• Using slurmdbd with fair sharing (no limits) NOT 
under simulation control

• Using backfilling limiting loops to 20 (hardcoded) 
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SLURM SIMULATOR: RESULTS

Performance (backfilling dependent)
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SLURM SIMULATOR: RESULTS

Performance (backfilling dependent)
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SLURM SIMULATOR: RESULTS

Running/Waiting jobs  (sim_ctrl)
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SLURM SIMULATOR: USE EXAMPLES

Configuration Tuning

• Our current Moab/Slurm configuration is based on 
fair sharing and qos limits

• Sometimes machine has idle nodes but limits avoid 
a better usage

• Let's do simulation using a pure fair sharing versus 
current MN configuration (Moab) using qos limits with 
fair sharing 

 



31

SLURM SIMULATOR: RESULTS

Pure Fair sharing VS QOS limits

• Utilization: 72% versus 71% 

• 1% (2546 nodes * 4 cores 
         * ~44 days) 

=  391949062 cpu hours
= 10 hours per core 

• Waittime? 
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SLURM SIMULATOR: RESULTS

Pure Fair sharing VS QOS limits
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SLURM SIMULATOR: RESULTS

Pure Fair sharing VS QOS limits
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SLURM SIMULATOR: RESULTS

Running/Waiting jobs  (sim_ctrl)
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SLURM SIMULATOR: RESULTS

Running/Waiting jobs  (sim_ctrl)

 
QOS Limits

Real MN 
execution



36

SLURM SIMULATOR: USE EXAMPLES

Jobs TimeLimit Impact

• How would be life with users more aware of job 
timelimit?

• Let's do two executions with same trace with one 
using a perfect wclimit guess by users
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SLURM SIMULATOR: RESULTS

Jobs TimeLimit Impact
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SLURM SIMULATOR: USE EXAMPLES

Backfilling Tuning
• How many pending jobs to process?

• How long the scheduling cycle?

120/10 300/10 120/20 300/20 120/30 300/30
0

500

1000

1500

2000

2500

3000

2525

0

1201

1.3

2445

1.3

Backfilling interval/depth

E
xt

ra
 h

o
u

rs



39

SLURM SIMULATOR: USE EXAMPLES

Backfilling Tuning
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• How many pending jobs to process?

• How long the scheduling cycle?
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SLURM SIMULATOR: USE EXAMPLES

Backfilling Tuning

• Simulation is not real enough (it could) but …
• Backfilling parameter tuning does not have a huge impact
• Hypothesis:

Marenostrum trace of ~50000 jobs:

➔ average interval between job submission < 1 minute
➔ During working hours << 1 minute
➔ last_job_update modified really often
➔ Backfilling algorithm pausing after 5 seconds...
➔ Depth parameter not reached most of the time

 Is Defer parameter enough?
 Keep hold of submitted jobs by some time then inserting them all   
  at a specific point?
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SLURM SIMULATOR: USE EXAMPLES

Backfilling Tuning

• How many pending jobs to process?

• How long the scheduling cycle?

• What if we do not respect priority? NoReserved QOS flag 

• What if we use Moab-like BF chunk and timewait?
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SLURM SIMULATOR: FUTURE WORK

• Killer app? Since first version released I got no 
news from potential users …

• I would like to commit the work but, does it make 
sense?

• This could be used by users/admins, developers 
and researchers
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SLURM SIMULATOR: FUTURE WORK

• Job traces generation. Clasification? Repository?

• Adding flexibility to jobs submission

• Avoiding users accounts for simulation

• Adding node events

• Preemption

• Getting statistics/graphs from slurmdbd

• Slurm core request: statistics for some code functionalities 
like: backfilling, slurmdbd connections,  queued time rate, 
submission time rate



45

SLURM SIMULATOR: FUTURE WORK

QUESTIONS?

     Thank you

alejandro.lucero@bsc.es
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