
Alejandro Lucero
Alejandro.lucero@bsc.es

SLURM

SIMULATOR

Phoenix, September
2011

2

SLURM SIMULATOR

1. Introduction: Why Slurm Simulator?
2. Design & Implementation
3. Results
4. Use Examples
5. Future Work

3

SLURM SIMULATOR

1. Introduction: Why Slurm Simulator?
2. Design & Implementation
3. Results
4. Use Examples
5. Future Work

4

SLURM SIMULATOR: INTRODUCTION

• I work as a performance engineer at Barcelona
SuperComputing Center (BSC), Spain

• We have 5 HPC cluster with Slurm, the big (and old)
one with 2500 nodes

• Expecting a Petaflop machine before year's end

• BSC leader of RES (Supercomputers Network of
Spain) with 7 HPC clusters (technology centers)

5

SLURM SIMULATOR: INTRODUCTION

6

SLURM SIMULATOR: WHY SLURM SIMULATOR?

• We use Moab with Slurm for batch scheduling in most of
the clusters

• Scheduling configuration/tuning depends on parameters
like: fair sharing tree, qos/user/group limits, backfilling
interval/chunk, reservations

• Moab supports some sort of simulation mode (Moab
manual says that). Using real job submission traces under
simulation can tell us which configuration would be better

7

SLURM SIMULATOR: WHY SLURM SIMULATOR?

• I could not make this simulation mode working under
Moab (Adaptive Computing “this is not supported any
more...”)

• Uhmmm … Why not to have such a mode with Slurm?

• Last Slurm meeting in Paris we presented a first proposal
and no one said we were mad so ...

8

SLURM SIMULATOR

1. Introduction: Why Slurm Simulator?
2. Design & Implementation
3. Results
4. Use Examples
5. Future Work

9

SLURM SIMULATOR: DESIGN

Some things about Slurm:

• Slurm is a multithread and distributed software

• Two main components: slurmctl and slurmd

• Code optimized for starting/signaling jobs through
hundred or thousands of node

• Agent threads for communications

10

SLURM SIMULATOR: DESIGN

➔ Goal: Minimum changes to slurm core

➔ A new program, sim_mgr will take the control of Slurm
 execution and maintain simulation time domain

➔ LD_PRELOAD will be used catching slurmctl/slurmd
time-related functions (time, sleep, gettimeofday) inside a
library sim_lib

➔ Shared memory will be used for global simulation time

➔ Just one slurmd will be needed but no jobs executed

11

SLURM SIMULATOR: DESIGN

• Capturing time-related calls with LD_PRELOAD is easy
and simple with a single thread program but...

• With Multithread & Distributed Slurm:

➔ Thread-related calls need to be captured as well inside
sim_lib

➔ A per-thread structure in the shared memory keeping thread
ID (simulation domain), sleep seconds field, semaphores

➔ Semaphores used for simulation control: just one thread
executed concurrently*

12

SLURM SIMULATOR: DESIGN

• Slurm threads from simulator point of view:

➔ Those being executed through the full simulation / execution
with a periodic cycle using sleep call (created when slurm is
initialized during first simulation cycles)

➔ Those created and finished during a simulation cycle: no
sleep calls made (created with new events: job submission, job
dispatched, job finished)

➔ Some special ones like rpc threads which need to execute at
any time without sim_mgr control for avoiding deadlocks.Those
live thorugh the whole simulation but no sleep call made.

13

SLURM SIMULATOR: DESIGN

• A thread from slurmctld or slurmd will go through:

(1) pthread_create is captured and a thread is registered inside
sim_mgr thread array getting an unique ID

(2) Threads code executes

(3) If this is a periodic thread, sleep call is captured by sim_lib
and thread waits on a semaphore

(4) Threads call pthread_exit which releases slot in sim_mgr
array

14

SLURM SIMULATOR: DESIGN

sim_mgr

➔ A simulation cycle represent a real second
➔ Each cycle:

(1) Goes through all threads registered and leaves them to execute if no
sleeping, just one at a time (determinism)

(2) Looks for new events from trace file: new job, new reservation

(3) Checks for new threads created during this cycle (this is done in
several places) and waits till all exit.

(4) Increments simulation time

15

SLURM SIMULATOR: IMPLEMENTATION

• Slurm simulator should be transparent for slurm
core developers

• Two pieces of software external to slurm core:
sim_mgr and sim_lib

• Semaphores and shared memory created and
initialized by sim_mgr

16

SLURM SIMULATOR: IMPLEMENTATION

17

SLURM SIMULATOR: IMPLEMENTATION

Slurm code changes

• Threads need to call pthread_exit explicitly

• Jobs and nodes Monitoring is not actived at slurmctld

• Agents are avoided: job start message is part of thread doing the
schedule (deadlock, determinism)

• Slurmd accepts messages from sim_mgr for getting information
about job duration. A new thread controls when a job finishes for
sending message to slurmctld

18

SLURM SIMULATOR: IMPLEMENTATION

Job submission/dispatch

19

SLURM SIMULATOR: IMPLEMENTATION

Job completion

• Sim_helper thread (slurmd) checks for jobs finishing in each
simulation cycle

• Usual COMPLETE_BATCH_SCRIPT and EPILOG_COMPLETE
sent to slurmctld

• EPILOG_COMPLETE message does NOT give rise to schedule in
slurmctld. A single call to schedule instead when all epilog
messages are sent using a special message from slurmd to
slurmctld (determinsm)

20

SLURM SIMULATOR: IMPLEMENTATION

Job completion

21

SLURM SIMULATOR: IMPLEMENTATION

Slurm code changes

• Backfilling thread execution time by scheduling cycle is dependent
on numer of jobs waiting. It can take long even tuning bf depth

• Backfilling algorithm checks if execution time exceeds a configured
limit (sched_timeout = 5 seconds by default). If so it goes to sleep for
backfilling_interval seconds.

• It keeps going from same point inside backfilling algorithm except if
some update to any job, node or partition.

• Under simulation it is not possible to check “real” execution time
easily. A loop counter for processed jobs

22

SLURM SIMULATOR: IMPLEMENTATION

Simulator Monitor

• Stopping simulation on a specific point in time

• It can be periodic for getting data

• When simulation stopped some slurm commands can still
be executed like:

scontrol setdebug 9

23

SLURM SIMULATOR

1. Introduction: Why Slurm Simulator?
2. Design & Implementation
3. Results
4. Use Examples
5. Future Work

24

SLURM SIMULATOR: RESULTS

• Simulator initial work on slurm-2.1.9

• First porting to slurm-2.2.6 really fast and easy

• Lines changed:

➔ 563 added
➔ 17 removed
➔ Plus ~2000 lines sim_mgr.c and sim_lib.c

25

SLURM SIMULATOR: RESULTS

Performance

• Intel Xeon 2.5Ghz, 8 cores, 12GBytes of memory
• Using a real two month trace from Marenostrum
(~50000 jobs, 489 users, 19 qos, 15 accounts)

• Marenostrum: 2500 nodes, 4 cores by node

• Using slurmdbd with fair sharing (no limits) NOT
under simulation control

• Using backfilling limiting loops to 20 (hardcoded)

26

SLURM SIMULATOR: RESULTS

Performance (backfilling dependent)

120/10 300/10 120/20 300/20 120/30 300/30
0

20

40

60

80

100

120

140

75

121

75

122

75

121

Backfilling interval/depth

S
p

e
e

d
u

p
/H

o
u

rs

27

SLURM SIMULATOR: RESULTS

Performance (backfilling dependent)

120/10 300/10 120/20 300/20 120/30 300/30
0

200

400

600

800

1000

1200
1069 1069 1069 1069 1069 1069

SimTime
ExecTime

Backfilling interval/depth

H
o

u
rs

28

SLURM SIMULATOR: RESULTS

Running/Waiting jobs (sim_ctrl)

29

SLURM SIMULATOR

1. Introduction: Why Slurm Simulator?
2. Design
3. Implementation
4. Results
5. Use Examples
6. Future Work

30

SLURM SIMULATOR: USE EXAMPLES

Configuration Tuning

• Our current Moab/Slurm configuration is based on
fair sharing and qos limits

• Sometimes machine has idle nodes but limits avoid
a better usage

• Let's do simulation using a pure fair sharing versus
current MN configuration (Moab) using qos limits with
fair sharing

31

SLURM SIMULATOR: RESULTS

Pure Fair sharing VS QOS limits

• Utilization: 72% versus 71%

• 1% (2546 nodes * 4 cores
 * ~44 days)

= 391949062 cpu hours
= 10 hours per core

• Waittime?

120/30
0

10

20

30

40

50

60

70

80

90

100

72

PFS
QOS Limits Backfilling interval/depth

C
lu

s
te

r
U

ti
li

za
ti

o
n

 %

32

SLURM SIMULATOR: RESULTS

Pure Fair sharing VS QOS limits

class_a
class_b

class_c
bsc_ls

bsc_es
bsc_cs

bsc_case
benchmark

debug
hpce

interactive
xlong

0

20000

40000

60000

80000

100000

120000

8262

13550

8454

60611

22 390

3156

562
1919

2976

11329

116267

PFS
QOS Limits

QOS

Q
u

e
u

e
 W

a
it

 T
im

e
 (

S
e

c
s

)

33

SLURM SIMULATOR: RESULTS

Pure Fair sharing VS QOS limits

class_a
class_b

class_c
bsc_ls

bsc_es
bsc_cs

bsc_case
benchmark

debug
hpce

interactive
xlong

0

200000

400000

600000

800000

1000000

1200000

158371

62781
79585

1165161

15748

53948

82646 80590

42000

77248

124833

270777

PFS
QOS Limits

QOS

M
a

x
 Q

u
e

u
e

 W
a

it
 T

im
e

 (
S

e
c

s
)

34

SLURM SIMULATOR: RESULTS

Running/Waiting jobs (sim_ctrl)

QOS Limits

Pure Fair
Sharing

35

SLURM SIMULATOR: RESULTS

Running/Waiting jobs (sim_ctrl)

QOS Limits

Real MN
execution

36

SLURM SIMULATOR: USE EXAMPLES

Jobs TimeLimit Impact

• How would be life with users more aware of job
timelimit?

• Let's do two executions with same trace with one
using a perfect wclimit guess by users

37

SLURM SIMULATOR: RESULTS

Jobs TimeLimit Impact

120/30
0

10

20

30

40

50

60

70

80

90

100

72.29

wclimit=duration
Normal wclimit Backfilling interval/depth

C
lu

s
te

r
U

ti
li

za
ti

o
n

 %

class_a
bsc_ls

bsc_es
benchmark

debug

0

10000

20000

30000

40000

50000

60000

70000

8262

60611

22 562
1919

wclimit=duration
normal wclimit

QOS

Q
u

eu
e

W
ai

t
T

im
e

(S
ec

s)

38

SLURM SIMULATOR: USE EXAMPLES

Backfilling Tuning
• How many pending jobs to process?

• How long the scheduling cycle?

120/10 300/10 120/20 300/20 120/30 300/30
0

500

1000

1500

2000

2500

3000

2525

0

1201

1.3

2445

1.3

Backfilling interval/depth

E
xt

ra
 h

o
u

rs

39

SLURM SIMULATOR: USE EXAMPLES

Backfilling Tuning

120/10 300/10 120/20 300/20 120/30 300/30
0

1000

2000

3000

4000

5000

6000

7000

8000
7641

7460 7488

7239

7488

7239

class_a
benchmark
bsc_es
bsc_ls Backfilling interval/depth

w
ai

tt
im

e(
se

co
n

d
s)

• How many pending jobs to process?

• How long the scheduling cycle?

40

SLURM SIMULATOR: USE EXAMPLES

Backfilling Tuning

• Simulation is not real enough (it could) but …
• Backfilling parameter tuning does not have a huge impact
• Hypothesis:

Marenostrum trace of ~50000 jobs:

➔ average interval between job submission < 1 minute
➔ During working hours << 1 minute
➔ last_job_update modified really often
➔ Backfilling algorithm pausing after 5 seconds...
➔ Depth parameter not reached most of the time

 Is Defer parameter enough?
 Keep hold of submitted jobs by some time then inserting them all
 at a specific point?

41

SLURM SIMULATOR: USE EXAMPLES

Backfilling Tuning

• How many pending jobs to process?

• How long the scheduling cycle?

• What if we do not respect priority? NoReserved QOS flag

• What if we use Moab-like BF chunk and timewait?

42

SLURM SIMULATOR

1. Introduction: Why Slurm Simulator?
2. Design & Implementation
3. Results
4. Use Examples
5. Future Work

43

SLURM SIMULATOR: FUTURE WORK

• Killer app? Since first version released I got no
news from potential users …

• I would like to commit the work but, does it make
sense?

• This could be used by users/admins, developers
and researchers

44

SLURM SIMULATOR: FUTURE WORK

• Job traces generation. Clasification? Repository?

• Adding flexibility to jobs submission

• Avoiding users accounts for simulation

• Adding node events

• Preemption

• Getting statistics/graphs from slurmdbd

• Slurm core request: statistics for some code functionalities
like: backfilling, slurmdbd connections, queued time rate,
submission time rate

45

SLURM SIMULATOR: FUTURE WORK

QUESTIONS?

 Thank you

alejandro.lucero@bsc.es

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

